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Abstrad. A quantum-mechanical calculation of the nowradiative transition rate by multiphonon 
processes is performed by employing a more direct mathematical approach than those used by 
previous workers. Based on the trap potential model proposed by Lucovsky and the optical 
deformalion form of electron-phonon interaction. lhe analytical expression for the cvrier capture 
cross section is brought to a transparent form for easy comparison with experiments after some 
transcriptions. The effect due to the charge state of the deep centre is also discussed. Both 
the absolute magnitude and lhe temperature-dependent behaviour of the capture cross section 
predicted in our calculations are well supported by thP experimental results of various deep 
centres in semiconductors. In particular. good fits m obtained for rhe temperature dependence 
of the experimental electron capture cross sections reported by Henry and Lang for B and A 
cenves in GaAs. The accuracy of the Huang-Wys factor and the  phonon energy obtained for 
the B centre is corroborated by the good fittings obtained for the photoionization cross section 
data reported by Wang et d. The results of our theory are also shown to be useful in identifying 
more accurately the charge state of a deep centre. 

1. Introduction 

Quantum-mechanical calculations of non-radiative multiphonon (NMP) transition rate in 
solids have been performed by many previous workers [ I 4  However, their results, being 
complicated, need to be simplified by assuming some specific temperature range before 
they can be used to fit the experimental data. Thus the comparison between theory and 
experiment is unavoidably limited. An example is the fit to the electron capture cross 
section of the B centre in GaAs [5] .  Some progress towards the solution of the problem has 
been made recently by Goguenheim and Lannoo [6], who obtained a compact expression 
for the capture cross section valid for the whole temperature range. However, the estimation 
of the absolute magnitude of the capture cross sections in deep centres for semiconductors 
remains to be worked out. Such calculations would require detailed models of the electronic 
states and the electron-phonon interaction. Nonetheless, the use of these models would also 
contribute towards physical understanding of carrier capture mechanism in semiconductors. 

In this paper an analytical calculation of the carrier capture cross section of deep centres 
in semiconductors is presented. Section 2 outlines a quantum-mechanical calculation of NMP 
transition rate in solids, which is based on a more direct mathematical approach than those 
of the previous workers. In section 3 a set of trap-related parameters for semiconductors 
is calculated based on a simple potential proposed by Lucovsky [7]. The form of electron- 
phonon interaction used in the calculation is that of optical deformation, which is believed 
to be dominant [8]. The relations of the trap-related parameters so obtained are used in 
section 4 to simplify the expression for the capture cross section to a more transparent form 
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for comparison with experiments. The theoretical estimates of the absolute magnitudes and 
the temperature-dependent behaviour of the capture cross sections for typical neutral centres 
are found to be well supported by the experimental results reported in [9]. In section 5 
detailed fits of OUT theory to Henry and Lang’s experimental data [9] for the B and A centres 
in GaAs are performed. The values of the Huang-Rhys factor S and average phonon energy 
fio, extracted from our fit to the data for the B centre, are quite different from those obtained 
by Goguenheim and Lannoo [6]. In order to corroborate the accuracy of the values of S 
and hw that we obtained, they are used to obtain the photoionization cross-section curves 
a,ph(kv) of the B centre reported by Wang et al [lo]. The good fits to all the curves at 
various temperatures indicate that our values of S and Rw are able to explain the observed 
thermal broadening effect of aih(hwv). 

J H Zheng et a1 

2. Calculation of non-radiative multiphonon transition rate in solids 

The NMP transitions of electrons in solids are believed to be due to the breakdown of the 
adiabatic approximation since the Born-Oppenheimer wavefunction qin(v ,  Q )  chosen for 
the stationary stale of a system cannot be strictly stationary. The breakdown of the adiabatic 
approximation leads to a perturbation Hamiltonian U N A  that mediates the transition of 
electrons from one state to another. The operator is defined by [ I  I ]  

where 
the Born-Oppenheimer wavefunction 
equations: 

(T, Q) and X,, ( Q )  are respectively the electronic and the lattice vibrational parts of 
Q),  and they satisfy the Following eigenvalue 

In the equations above, U,, U ,  and ‘He! are the electronic, the lattice vibrational and the 
electron-phonon coupling parts of the total Hamiltonian. Here T is the position vector of 
the electron and Q is the configuration coordinate, which denotes symbolically all the lattice 
coordinates Q,. 

The radiationless transition rate Wub from state a to b due to the breakdown of the 
adiabatic approximation is given by the Fermi-golden rule: 

where Ave, denotes a thermal average over all the states of the lattice vibrations in the 
initial state a. 

Linear electron-lattice interaction is usually assumed, and may be expressed by 
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where Q; is the equilibrium position of the lattice vibrations in the initial state a. In solving 
equation (21, the term ‘&I is treated as a perturbation. The equilibrium position of the lattice 
vibrations may then be expressed as 

where IQ:) is the zeroth-order electronic wavefunction, which satisfies ‘He14r~) = U ~ l O ~ ) ,  
and w , ~  is the angular frequency of the lattice vibration for the sth mode. With the assumption 
of linear electron-phonon interaction, the lattice vibrations are still harmonic oscillators and 
their angular frequencies remain unchanged. The lattice vibrational part of the wavefunction 
may then be expressed as 

Q: = -(@!lGs(r)l@?)/fi~!~ 

IXintQ)) nln.y(Q.~ - Q:)) 

where n,y is the quantum number of the lattice vibrations. The difference in the total energy 
between the two states a and b is then given by 

E h  - E ,  = - - E ~  + - n,)hw,< (5 )  

where ET is the electronic energy separation between the states a and b. The shift A of 
the equilibrium position of the lattice vibrations during the transition from state a to b is 
defined by 

The Huang-Rhys factor S, which will be used later, is then defined as 
A,y = Q: - Q:. 

S = i c A 2  2 I ’ 

Within the so-called non-Condon approximation in solving equation (2), the transition matrix 
element in equation (3) can be  reduced to the form [12]: 

(*bn,I‘FtNA I *on ) = z(@:lG.x ( I )  148) ( X b d  I Q,Y - 1x0,~). (6)  

With the equation above and the notation V, = (@il&(r) l@t) ,  the transition rate Wob is 
then expressed as 

Before performing the detailed calculation of the vibration overlaps in equation (7), it 
is necessary to assume that all modes of lattice vibrations have the same frequency w .  This 
assumption is needed in order to obtain simple applicable results. The detailed calculation 
is given in the appendix, where we reproduce by using a more direct mathematical approach 
the same results as obtained by Gustche [4] and by Goguenheim and Lannoo [6].  A more 
compact form of Woh can be obtained if we make use of a relation for modified Bessel 
functions as was done in [6]. This compact form would permit us to gain deeper insight 
into the behaviour of with respect to its  parameters. The relation used is 

I m - l ( 0  - h t ( 0  = ( 2 m / 0 1 , ( 5 ) ,  (8) 
The compact form of W,b so obtained from equation (A5) is 

~ 

The auxiliary function C ( E r )  and the notations I VA/’ and I VIz are defined in the appendix. 
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3. Evaluation of the trap parameters for semiconductors 

The behaviour of NMP transition rate with respect to temperature is governed by the three 
parameters S, [Vi2 and IVAI2. These matrix elements depend on the form of electron- 
phonon coupling (which is assumed to be linear in the laftice displacement) and also on the 
electronic wavefunctions of both the initial and final states. For thermal capture of carriers 
in semiconductors, the free state f and the bound state b are taken as the initial and final 
states, respectively. For convenience of discussion, we will assume that the free carriers 
are electrons, although our theory applies equally well to holes. 

To build up the bound-state wavefunction, we use the trap potential model proposed 
by Lucovsky [7], which has been used successfully in the calculation of photoionization in 
deep centres. The bound-state wavefunction W:(r) for the model may be expressed as 

J H Zheng et a1 

@(r) = A exp(-r/a)/r ( r  5 Ro) (10) 

where a = h/(Zm*Et)l/’ ,  A = i/(h*a)’’’. Ro is the radius of the effective potential of 
the trap, and ni* is the electron effective mass. 

As a deep bound state is very localized relative to a free state, the free-state wavefunction 
used in performing the integrals on the matrix elements is limited to the region where r + 0. 
To take into account the scattering effect on the free-state wavefunction, it is assumed that, 
beyond the short-range attractive potential, there is a long-range Coulomb potential with 
charge 2. Under such a model, the free-state wavefunction for r -+ 0 is given by 

q = ( I /  v;’*)c;%) (1 1) 

where V, is the volume of the whole crystal and CO(€) is the Sommerfeld factor [13]. 

potential: 
For the electron-phonon coupling, we consider the form based on the optical deformation 

G . k )  = DO e x p h  . T) (12) 

where qA is the phonon wavevector and DO is a qJndependent constant. 
The mamx elements S, lVlz and IVA1* are then evaluated by ignoring the weaker 

short-wavelength contributions, i.e. q,a >> 1. Moreover, the following important relations 
of the matrix elements are obtained: 

From these relations, it can be seen that the second term of equation (9) for NMP 
transition rate, which has the factor 

(1 - IVA[z/2SIV12) 

is zero. This important result Ieads to a very much simplified expression for W,,, which is 

Wfb = [ I ~ Z ~ U ~ C O ( E ) / ? I V , ] ( E T  - sfio)2c(Er). (14) 

In contrast, Coguenheim and Lannoo [6] obtained their Wjb in terms of G ( E r )  by 
reducing the term i C ( E r  + ko) + (ti + l)G(E+ - fiw) of equation (9) approximately to 
G ( E T )  through a certain relation of the modified Bessel functions. Therefore, even after 
the reduction, their equation for W,, is still more complex for interpretation than OUTS. 
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4. Capture cross sections 

The transition of capturing processes considered above refers to that from the bottom of 
the conduction band to the trap level. However, owing to the distribution of free electrons 
in the conduction band, it is required to take an average of the capture coefficient C,,(T), 
which is 

where E is the thermal energy of a free electron, f ( ~ )  is the normalized distribution of the 
free electrons in the conduction band and P(E) is the density of states of the conduction 
band. It can be seen easily that the main contribution in the integration of equation (15) 
comes from a range E e E-. where cmaX is the upper limit o f t  in which C,,(E)~(E)P(E) 
still has a significant value for the integration. Typically E,, is of the order of k T .  

In order to perform the integration of equation (U) ,  we need to simplify the function 
C(Er  + E. T )  in C,,(Er + e, T ) .  With the following relation [6] for the modified Bessel 
function r,, which is valid for (m2 t CZ)'/' >> 1 (a condition satisfied by all deep centres), 

I m - l ( < )  + I m + l ( O  2[(m2 + < 2 ) " 2 / ~ ~ l m ( < )  

and equation (S), we obtain the approximate relation for integers Am << m: 

lm+Am(r) 2 II(m2 + r2)1/2 - ~ I / < I ~ " Z ~ K ) .  

With this result and noting that E,, << Er (for deep centres), the integration of 
equation (15) would lead to 

C,,(T) 2 ( 1 6 1 ~ ~ a ~ / h ) ( E r  - SRw)*G(Er. T ) F ( T )  (16) 

where 

is a charge-state-dependent function with argument T and P = Er/fiw. It is evident from 
equation (16) that the capture coefficient of a deep centre by NMP transition processes is 
modified by the factor F ( T )  due to the charge state of the deep centre and the averaging 
of the free-electron distribution. Moreover, we have obtained an expression for C,(T) in 
which the charge-state-dependent component F ( T )  is separated from the NMP-dependent 
component (ET - S ~ J ) ~ G ( E ~ ,  T ) .  Given the charge state of a deep centre, the exact 
values of F ( T )  given by equation (16a) can be computed numerically. Such calculations 
have been preformed for various types of deep centres. The results of the charge-state- 
dependent behaviour are too involved to be discussed in detail in the present paper and 
will be presented in another publication. Nonetheless an important result of our findings is 
that, when the temperature-dependent behaviour of C,(T) is dominated by the NMP process, 
i.e. the G(Er ,  T )  term, the charge-state-dependent function F ( T )  can be approximated as a 
constant. Hence one can accurately reproduce the exact results of equation (16) by adopting 
the following expression: 

C p ( T )  = Fz(16n2a3 /R) (E~  - S h ) ' G ( E r ,  T ) .  (17) 
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Figure 1. The symbols shown in the figure are 
h e  values of C ( T )  calculated numerically by 
using equation (16) with ET. = 0.4 eV, Rw = 
0.025 eV and S = 6: E ;  is the Bohr energy for 
an al trxt iw cenme. E$ for a ne!ttml centre and 
E& for a repulsive centre. The C p ( T )  given by 
the approximate expression of equation (17) are l2 

1000/T shown I full cuNes 

0 4 8 

Here fio is the effective average phonon energy, which has taken into account the effects of 
the chzge  state of a deep centre and the free-electron distribution, and Fz is a charge-state- 
dependent constant. The ability of equation (17) to reproduce the exact results of Fp(T)  
i s  well demonstrated in figure I ,  where we compare the C,(T) computed by numerical 
integration of equation (16) with that given by equation (17) for typical centres. 

In principle, Fz is indicative of the magnitude of the function F ( T ) ,  which can be 
computed by numerical integration. For a neutral centre, FZ is about the order of unity. 
For an attractive centre, FZ will be larger than that for a neutral centre. For a repulsive 
centre, FZ is a number generally very much less than one. Therefore, an examination of the 
value of FZ obtained by the fit of equation (17) to experimental data would immediately 
reveal the nature of the charge state of a deep centre. 

The carrier capture cross section o ( T )  can be easily found by dividing c,,(T) by the 
thermal velocity of the carriers: 

where uo = (2z5 /* f i2 /m*E~)Fz  is a prefactor that depends on the charge state of the trap 
centre via Fz.  Equation (18) shows that the temperature dependence of the NMP capture 
cross section is governed by the auxiliary function G(E7, T ) .  The function G ( E r ,  T ) .  as 
defined, is a polynomial, which can be approximated by an analytic form of the modified 
Bessel function I m ( ( )  [14] valid for (mZ + c2)'/' >> 1 (a condition satisfied by all deep 
centres): 



Non-radiative capture of carriers by multiphonon processes 1701 

Such an analytical function of G ( E T )  is particularly convenient if a rapid fit of theory 
to experiment is called for. We would like to remark here that the expression of the 
auxiliary function G ( E T )  in equation (19) is different from those in equation (29) of (61 
and equation (12) of [15] unless we let t = 1 in the term { < / [ P  i ( P 2  + ~ 2 ) 1 / 2 1 ] P  of 
equation (19). 

The temperature-dependent behaviour of the capture cross section and its absolute 
magnitude for various coupling strengths (Huang-Rhys factor) S is illustrated in figure 2 for 
a typical neutral centre of ET = 0.4 eV and ho = 0.025 eV. It is easily seen in figure 2 that 
the temperature dependence of the capture cross section under the NMP mechanism becomes 
weaker as the temperature is lowered. From the curves drawn in figure 2 and the asymptotic 
form of equation (18) it can be seen that the extrapolation of the values of the capture cross 
section um as T -+ 00 are confined to a range of 10-'3-10-15 cmz, which is consistent 
with Henry and Lang's data [9].  Furthermore, the temperature-dependent behaviours shown 
in figure 2 are also well supported by the experimental data of 191. 

0 4 8 12 

lOOO/T 

Figure 2. Theoretical curves of the capture cross section Venus inverse absolute tempenture 
for neutral centres: E7 = 0.4 eV, hw = 0.025 e V  and with S = 3, 5 and 13 respectively. The 
effeclive m m  m' is w e n  as 0.067mo for the centres. The broken lines are the extrapolations 
of the CUAS at I + m as done by Henry and Lang [91. 

5. Discussion and comparison with experiment 

The expression for the capture cross section given in equation (18) can readily be used to 
f i t  the experimental data. Fittings have been carried out on the experimental temperature- 
dependent electron capture cross sections of the native deep centres A and B in GaAs 
reported by Henry and Lang [9]. The thermal ionization energy ET used in the fit for 
each centre is the value reported in experiments such as Hall measurement or capacitive 
spectroscopy techniques. The free parameters used in the fittings are the Huang-Rhys factor 
S ,  the average phonon energy hw and UO. Results of the best fit are shown in figure 3. 
It is found that the temperature-dependent behaviours of the fittings are very sensitive to 
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the two parameters S and hw. The values of the parameters used in performing the fits 
are listed in table I ,  which reflect a stronger electron-phonon coupling in the A centre than 
in the B centre. The average phonon energies hw obtained for the two centres coincide 
with the longitudinal optic (Lo) mode phonon energy [IS] of GaAs. The theoretically 
calculated values of the parameter 00 assuming neutral centres are also listed in table 1 
for comparison with those obtained from the fits, The fairly good agreement between the 
theoretical and the best-fit values of uo for the B centre implies that the centre is nearly 
neutral, whereas the larger difference in the values for the A centre indicates that the centre 
is slightly repulsive. Results on the B centre also demonstrate that a small capture cross 
section does not necessarily imply that the trap potential is repulsive, a conclusion often 
drawn by experimentalists. 

J H Zheng et a1 

Tahle 1. The parameters used in best fittings for A and B cenlres in GaAs 

A B 
Energy level relative to E, + 0.4 E, f0.71 

Binding energ). at 300 K ET (eV) 191 1.03 0.72 
Huang-Rhys factor, S 14.34 3.87 (056 [6])  
Phonon energy. Ro (meV) 30 30 (34 [61) 
Fnnk-Condon shift, Sfio (eV) 0.43 0.116 (0.019 [61) 
Chqe-dependent factor, no (cm') 8.7 x 11.7 x IO- "  

valence band edge E, (eV) 191 

Theoretical estimate of CO (cm2) 3.9 x 10-'3 5.5 x 1 0 - l ~  

(assuming neut rd  centre)' 

Effective mass m* t&en as 0.067ms for GaAs 181 

w a 
a 2 
0 

0 2 4 6 8 10 12 

1000/T 
Figure 3. The theoretical best fits of the experimental capture cross sections [9] of the B centre 
(0) and the A cenUe (0) in G& by using cqwdtion (IS). The best.fil panmeters employed 
are listed in table I .  

The fit to the electron capture cross section of the B centre has also been performed 
by Goguenheim and Lannoo [6] using their theory. The parameters S and Ro of their 
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best fit are also given in table I .  Their values are quite different from ours. In order to 
confirm the accuracy of our values for S and hw, we use them to obtain the experimental 
electron photoionization cross sections of the B centre, which have been carefully measured 
at various temperatures by Wang et a1 [lo]. The expression for the photoionization cross 
section with phonon coupling used in our fittings is as follows [16]: 

where oih(hv,  ET + E,,,) is the photoionization cross section with ionization energy equal 
to ET + E,,, in the absence of phonon coupling, G(E,.)  is just the expression given by 
equation (A4) and E!,, = p‘hw is the phonon energy emitted for positive p’ or absorbed 
for negative p’ by the electron during a transition process. There is a maximum value for 
E,,,, which is required by the condition that the kinetic energy of the electron excited to the 
conduction band must be positive. For the photoionization cross section U;~(~U, E ) ,  we 
use the result calculated by Lucovsky [7]: 

where KO is a constant. The only free parameter used in our fittings is the thermal ionization 
energy ET. Using our values of S and hw for the B centre listed in  table I ,  the values 
of Er obtained in the best fits range monotonically from 0.823 to 0.780 eV for the curves 
from 79 to 247 K. As shown in figure 4, the fits to all the experimental curves are very 
good. On the other hand, by using the values of S and ho reported by Goguenheim and 
Lannoo [6], the resultant theoretical curves, such as the one shown in figure 4 for 79 K, 
cannot account for the thermal broadening effect observed in the experiment [IO]. 

6. Conclusion 

Using the relations of the trap-related parameters based on a trap model and optical 
deformation form of electron-phonon coupling potential, the carrier capture cross section 
is brought into a simple and transparent form for easy comparison with experiment, Very 
good fits to the electron capture cross section for A and B centres in GaAs are obtained, 
from which we can extract the Huang-Rhys factor S, the average phonon energy ho and the 
charge-state factor GO. The accuracy of the two parameters S and ho for the B centre has 
been corroborated by the good fits of the experimental data of the temperaturedependent 
photoionization cross section. This consistency supports the theory developed in this paper. 
Hence we believe that we have a reliable method for extracting more accurate values of 
deep trap parameters, such as Huang-Rhys factor S, average phonon energy fio and thermal 
ionization energy ET. Accurate values of these parameters are definitely useful in identifying 
traps and in understanding the mechanism of the carrier capture and emission processes, 
The values of hw obtained for B and A centres in GaAs are both 30 meV, which coincides 
with that of the LO mode. This seems to imply the major involvement of optical phonons 
during multiphonon capturing processes. 

We have also described the charge-state effect on the carrier capture cross section. In 
particular, the charge-state factor uo introduced has been shown to be useful in identifying 
the charge state of a trap centre. 
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0.6 0.8 1.0 1.2 

Photon energy (eV) 

Figure 4. Theoretical best hts of experimental photoionization cross sections oih(hv)  for 
T = 19, 153. 198 and 241 K by using equations (20) and (21) and with our values of S 
and Ro in table I. The broken curve is for T = 19 K. using the value of S and ho reported in  
161. 
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Appendix 

In  the evaluation of the transition matrix elements needed for the expression o f  We,, only 
the lattice vibration modes will be considered. Contributions from the local modes, if any, 
do not affect our result because of the physically similar action of the local modes to that of 
the lattice modes, as mentioned by Ridley [3]. N lattice modes are assumed and the vector 
components V,  and A,v, which will be summed over all modes, contain a factor I / I V ’ / ~ .  For 
simplicity, we choose the origin of lattice configuration coordinates to be at the equilibrium 
position Q‘ of lattice vibrations in the initial state a. The arguments of Q - and Q -  Qb 
will then be replaced by Q and Q - A  respectively. Expanding the squared matrix elements 
of equation (7) in the text as 
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where the notations 

In,) = ln.,(Q.J) 14) = In:(Q, - Ad) 

have been used for brevity, we may rewrite equation (7) as follows: 

Here i,q is the thermal average over the phonon occupation number and has same value for 
all modes: 

= ii = I/(e"lkT - 1) .  (A3) 

G(E) is defined by 

which has been evaluated by Huang and Rhys [ I  I ]  and shown to be 

where < = 2 S [ i ( i i  + l)]'P and r,(<) is a modified Bessel function. We notice that the 
overlap integration (nil&) of the oscillator wavefunctions leads to a factor (I/NL12)n'*-z". 
Hence a change in the vibrational quantum number n: - ri,? by more than 1 can be ignored 
in the sum over ni, in the calculation of Web. Using the following calculated expressions 

1p r - 112 I - (niIQhQ = [(& + 1)/21 (n,Jn, + 1) + (riJ2) (n,ln,T - 1) 

(ni, = Z,v + lli.?) = (i,~/Z)"*A,y 

(n,: = Zsli,y) = e-"s-1'h:/2 

(ai. 2 2, - II$) = -[(is + l)/2I1'*A.~ 

and the notations 

we obtain finally the result for Wob as 

2 

Wah = (Zn/h) B ~ G ( E T  - j h w )  
j = - 2  
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where 
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B-2 = $ 1  VA12Ez 

B-I = iIVA12E+ fjV/’it 

Bo = -alVA12(2iiZ+2jl - 1) 

Bl = - f I V A 1 2 ( i +  1) + ;lV1*(i + I )  

B2 = - ; (VA1*( i  + 1)’ 

These results %e exactly the ones oblained by Gustche [4] and by Goguenheim and Lannoo 
[ 6 ] .  It can be easily proven that the expression for W;t:h above satisfies the detailed balance 
equation. 
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